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Abstract
Reinforcement learning has seen significant advances over the last decade in simulated or
controlled environments. This lead to an interest in deploying these methods in real-world
application problems, where they face the following combination of challenges- learning
in safety-critical environments, learning in partially observable and non-stationary environ-
ments, learning with limited samples, learning in high dimensional environments, system
delay, real-time inference at control frequency of the system and learning from off-logs.

In this dissertation, we consider learning in non-stationary and safety-critical environments.
We know that the classical reinforcement learning methods are often able to achieve high-
level performance but they don’t guarantee the safety of the environment during the learn-
ing process so they can’t be deployed in a safety-critical environment without posing safety
constraints to both learner and environment.

We first consider the safe exploration in the switching environment for which we have pro-
posed an Adaptive Safe-Explore policy that incorporates Bayesian inference and change
detection-based scheme. This policy balances two objectives: the first is to expand the safe
region from the initial safe seed, and the second to detect the change point. We observe
that Adaptive Safe-Explore is able to expand the safe region as well as detect the change-
points if environment switches and we also observe that a major challenge in adapting to
the switching change is to identify safe decisions when the change-point is detected and
prevent attraction to local optima in unsafe region.

Secondly, we consider the safe sequential optimization in the switching environments for
which we have proposed an Adaptive-SafeOpt policy that is an extension of the Adaptive
Safe-Explore policy to also include optimization. This policy balances three objectives: the
first is to expand the safe region, the second is to obtain the high reward region, and the
third is to detect the change-point. We note that the proposed Adaptive-SafeOpt converges
but since the safe set that they explore is limited in size, the convergence is to a local max-
ima. Here also we observe the same challenge of finding the safe seed at the time when
change-point detected and preventing to local maxima attraction in unsafe region.
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In the above-mentioned problems, we have considered the objective/reward and safety
function as a non-linear and time-variant function. Thirdly, we consider a simplified prob-
lem in which the reward function is linear and time time-invariant and the objective is to
maximize this reward function subject to linear safety constraints. This problem setup is
known as safe optimization in linear bandit setting. We proposed a Thompson sampling
based algorithm for this problem which has one parameter to tune (excluding prior param-
eters) compare to the Adaptive SafeOpt algorithm.
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Chapter 1

Introduction

Reinforcement learning (Sutton and Barto, 1998 [1]) has become the popular paradigm to
learn optimal policies by directly interacting with an a priori unknown dynamical environ-
ment. For example, the reinforcement learning methods can control complex video games
like Atari directly from the image perceptions (Mnih et al., 2015 [2]) and can defeat the best
human players at board games like GO (Silver, Huang, et al., 2016 [3]). For these kinds
of environments, reinforcement learning methods can achieve human-level performance or
better because they are trained on simulation for thousands of hours. The data-driven nature
of these methods leads to an interest in deploying these methods to real-world application
problems. Unlike in simulation, in the physical world actions have real consequences. So
these methods can’t be deployed in a safety-critical environment without posing safety con-
straints to both learner and environment.

Guaranteeing safety for real-world systems like robotics and healthcare system is a very
critical issue, especially when the system or the environment is non-stationary. For exam-
ple, Krause et al. [4] considered the problem of an autonomous rover exploring the surface
of Mars. The rover does not know the height or gradient of the surface which it is ex-
ploring. Since the rover has physical limitations with respect to the gradients it can move
over, it has to safely explore the surface. In addition, the rover should explore those loca-
tions on the surface which maximize scientific insight. The safe exploration in the above
problem becomes more difficult when the altitude of the Mars surface changes with time
due to asteroid hit or sand coagulation which affects the safety constraints. For another
example, Berkenkamp et al. [5] considered the problem of optimizing the controller pa-
rameters of a flying quad-copter which becomes more difficult when the environmental
conditions change with time, the optimal parameter for the controller needs to be adapted
to the changes in the environment.
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Prior work [6], [7] has used the framework of Bayesian optimization in order to propose
sequential decision making agents for the above safe exploration and optimization problem
but mainly for a function that is not time-varying. In this dissertation, we consider the
important extension of the above problem to the case where the unknown function is time
varying and exhibits a discontinuous switching to another unknown function at a change-
point epoch. The non-stationarity of the environments that agents have to contend with is
an important challenge for real-world problems [8]. We propose heuristic policies Adap-
tive Safe-Explore for safe exploration and Adaptive Safe-Opt for safe optimization (which
is an extension of the algorithm in [6] with change detection for the unknown functions)
and evaluate the performance of these policies using simulations. We observe that an im-
portant challenge in this problem is the re-initialization of an estimate of the safe set once
the change has been detected and propose a solution. And we also propose a heuristic pol-
icy Bayesian Safe-LTS (linear Thompson sampling) for safe optimization in linear bandit
problem which is special case of above problem.

1.1 Prior Work

Bayesian optimization has been used for addressing the problem of safe exploration and
optimization in which the unknown objective function and/or safety constraints are mod-
elled using Gaussian processes. The quantification of uncertainty, which is obtained for
free with the Bayesian framework, is used to decide a sequence of safe actions with high
probability. For bandit setting, Sui et al. 2015 [6] proposed Safe-Opt algorithm (Safe
exploration for Optimization), in which an a priori unknown safety function is modelled
using Gaussian Processes (GP) and it’s confidence interval is used to decide whether a se-
quence of decisions taken during exploration is safe or not. If at a decision time the value
of the safety function is more than a threshold then it is safe. In their setting the safety
and objective function are identical. The proposed Safe-Opt algorithm trades off between
maximizing the size of the safe set of decisions starting from an initial safe seed and find-
ing the optimal reachable decision in that safe set. We note that the authors considered
that the unknown function is stationary with time. In contrast to their work we consider a
non-stationary scenario and propose a change point detection based extension to Safe-Opt.
We note that in addition to the trade-off between maximising the size of the safe-set and
optimal reachable decision we also have another trade-off in the exploration required to
detect the change-point.
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For Markov Decision Process (MDP) setting, Krause et al. 2017 [4] proposed a safe ex-
ploration algorithm called Safe-MDP. In their work they assumed that the transition model
is known and safety function is unknown. The safety function is then modelled using GP
and also follows some regularity assumption such as similar values for similar states. In
their work they considered exploration in stationary MDP setting. Wachi et al. 2018 [7]
proposed a safe exploration with optimization algorithm for finite deterministic MDP and
provides theoretical guarantees on the policy being safe with high probability during the
exploration process, but this policy may not get the near-optimal cumulative reward. Wachi
and Sui 2020 [9] proposed a safe RL algorithm for finite deterministic MDP that guarantees
that the acquired policy will get near-optimal cumulative reward while being satisfying the
safety constraint as well during the learning process. In their work, they also assumed
the transition model is known and both reward and safety function is modelled using GP.
Wachi, Kajino and Munawar 2018 [10] extended [4] to the case of time-variant safety
functions. They assumed that the time-variation of safety functions satisfies a Lipschitz
continuity condition.

We note that optimization of unknown time varying (switching) functions without safety
constraints has been addressed by many authors. Mellor and Shapiro [11] had proposed a
Bayesian online change point detection based method for switching bandits. A similar ap-
proach was also used by [12]. Recently, Ghatak [13] had proposed a change detection based
Thompson sampling framework for non-stationary bandits. Padakandla et al. [14] provides
a survey of reinforcement learning algorithms for dynamically varying environments. We
note that our work incorporates the notion of safety in addition to the non-stationarity con-
sidered in the above papers.

We note that there are multiple approaches to ensuring safety for agents which include
the one summarized above. For example, the risk sensitive approach consists of a mod-
ification of the optimality criterion. In such work, the long-term reward maximization is
transformed to include some notion of risk (risk-sensitive reinforcement learning) related
to the variance of the return or its worst-outcome (Coraluppi et al. 1999 [15]). However,
these approaches only minimize risk and do not treat safety as a hard constraint. In other
works, the optimization criterion is transformed to include the probability of visiting error
states (Geibel and Wysotzki 2005 [16]) define risk as the probability of driving the system
to a previously known set of undesirable states. Garcıa and Fernández, 2015 [17] provides a
succinct survey on safe reinforcement learning. In other work on safe reinforcement learn-
ing, Moldovan and Abbeel (2012) [18] consider the problem of safe exploration in MDPs.
They ensure safety by restricting policies to be ergodic with high probability, i.e., able to
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recover from any state visited. This is computationally demanding even for small state
spaces and doesn’t provide convergence guarantees. Biyik et al. 2019 [19], consider the
problem of safe exploration in deterministic MDPs with unknown transition models. They
considered safety criterion similar to that in [18]. Roderick et al. 2019 [20], consider the
problem of safe exploration in PAC (probably approximately correct)-MDP with unknown,
stochastic dynamics. They assume the environment has a fixed initial states which is safe
and the reward function is known a-priori and bounded between -1 and 1; the rewards that
are negative denote dangerous state-actions and by using a analogous function they define
the similarity between sate-action pairs.

1.2 Our contribution

In this dissertation our contribution is that-

• We formulated the problems of safe exploration and safe sequential optimization for
switching environments.

• In safe exploration problem we identified a two way trade-off for exploration for
safety and exploration for change points. For that we proposed a safe exploration
algorithm called Adaptive Safe-Explore.

• In safe sequential optimization problem we identified a three way trade-off exploita-
tion for the maximization, exploration for safety, exploration for change points. For
that we proposed a safe optimization algorithm called Adaptive SafeOpt.

• We considered a simplified problem of safe optimization in linear bandit setting and
proposed a Thompson sampling based algorithm called Bayesian SafeLTS.

• We evaluated the performance of proposed algorithms via simulation and also com-
pared their performance with baseline algorithms.

1.3 Thesis Outline

• Chapter 2 In this chapter we discuss the necessary background and notation of re-
inforcement learning, Bayesian optimization framework setting, Gaussian process
regression, and dynamically varying environments.
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• Chapter 3 In this chapter we first state the system model and problem statement for
the safe exploration problem in the switching environments and propose an Adap-
tive Safe-Explore policy to address this problem and evaluate its performance via
simulation and compare with baseline policies.

• Chapter 4 In this chapter we first state the system model and problem statement
for the safe optimization problem in the switching environments and propose an
Adaptive SafeOpt policy to address this problem and evaluate its performance via
simulation and compare with baseline policies.

• Chapter 5 In this chapter we first state the system model and problem statement for
the safe optimization problem in the linear bandit setting and propose a Bayesian
Safe-LTS policy to address this problem and evaluate its performance via simulation
and compare with baseline policies..

• Chapter 6 In this chapter we conclude all the results and observations. And we also
discuss the future scope ot this work.
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Chapter 2

Background and Notation

In this chapter we will introduce the mathematical formulation of reinforcement learn-
ing [1] in section 2.1, In Section 2.2 we will discuss the Bayesian optimization framework
setting to optimize a unknown function, and a detailed discussion on Gaussian process
regression in section 2.3 which is a very useful tool to model the unknown function and
gives the uncertainty of the function in terms of the probability distribution. In section 2.4
we formally define the dynamically varying environments. We define our notation in each
section of this chapter which we will use in this dissertation.

2.1 Reinforcement Learning Preliminaries

Reinforcement learning provides a mathematical framework to design a optimal policy
for sequential decision making process.

Definition 2.1. (Markov Decision Process). The Markov Decision Process (MDP) provides
a mathematical framework to model the sequential decision making problems. The MDP
is defined as a tuple M =< S,A, T,R, γ >, where S is set of states s ∈ S (discrete
or continuous), A is set of actions a ∈ A (discrete or continuous), T transition function
defines a conditional probability distribution of the form T (st+1|st, at) that describes the
dynamics of the system, R : S × A→ R is reward function, γ ∈ (0, 1] is a scalar discount
factor.

In reinforcement setting the state transition probability T (st+1|st, at) and the reward
function R is not known. Figure 2.1 illustrate the reinforcement learning framework in
which agent-environment interact with each other at a sequence of discrete time steps, t =

0, 1, 2, 3, ...H , where H is time horizon. Where agent is the decision maker and other than
that are included in the environment. In context of the control theory the agent corresponds
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Figure 2.1: The agent–environment interaction.

to controller and the environment corresponds to system or plant. The agent observes the
state (st ∈ S) of the environment at time t and takes an action (at ∈ A), as a consequence
the environment evolves to a state st+1 ∈ S according to the transition function T , and
the agent gets a reward Rt+1 for taking action at in state st. The environment and agent
together thereby give rise to a trajectory τ , which is a sequence of states and actions of
length H , given by τ = (s0, a0, ..., sH , aH), where H can be finite or infinite based on
the task, according to this MDP is categorized as finite MDP or infinite MDP respectively.
Here the reward value at every time the agent receive for taking action in current state
quantify how good or bad that action is. So informally the goal of the agent is to maximize
this reward over the time.
Policy- At every time step the agent take an action a ∈ A according to a policy, which
defines a distribution over actions conditioned on states, π(at|st).
Formally, the agent’s goal is to learn a policy π, which maximize the expected cumulative
reward over the trajectory distribution pπ(τ). where pπ(τ) is given by-

pπ(τ) = d0(s0)
H∏
t=0

π(at|st)T (st+1|st, at) (2.1)

where d0(s0) is initial state distribution.
The learning objective, J(π), can then be written as an expectation under this trajectory
distribution:

J(π) = Eτ∼pπ(τ)[
H∑
t=0

γtR(st, at)] (2.2)
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In equation 2.2, if we don’t account the scalar discount factor γ then in case of infinite
MDP (H = ∞) the objective function J(π) value will not be finite. So in case of infinite
MDP discount factor γ ∈ (0, 1). Or in case of finite MDP we can put γ = 1.
Almost all reinforcement learning algorithms involve estimating value functions which are
state-value function (V π(s)) and state-action value function Qπ(s, a) under a policy π.
V π(s) gives an idea about how good for agent to be in state s under the policy π. And
Qπ(s, a)) give an idea about how good taking action a in state s for given policy. By
finding an optimal value of these functions, we can find optimal policy π∗ from them.
These function are defined as

Definition 2.2. State value function V π(st) is defined as an estimate of the expected cu-
mulative discounted reward that will be obtained by following some policy π(at|st) when
starting from a given state st.

V π(st) = Eτ∼pπ(τ |st)[
H∑
t′=t

γt
′−tR(st, at)] (2.3)

Definition 2.3. State-action value function Qπ(s, a) is defined as an estimate of the
expected cumulative discounted reward that will be obtained by following some policy
π(at|st) when starting from a given state st and taking action at.

Qπ(st, at) = Eτ∼pπ(τ |st,at)[
H∑
t′=t

γt
′−tR(st, at)] (2.4)

From this, we can derive recursive definitions for these value functions, which are given
as

V π(st) = Eat∼π(at|st)[Q
π(st, at] (2.5)

Qπ(st, at) = R(st, at) + γEst+1∈T (st+1|st,at)[V
π(st+1)] (2.6)

Qπ(st, at) = R(st, at) + γEst+1∈T (st+1|st,at),at+1∈π(at+1|st+1)[Q
π(st+1, at+1)] (2.7)

Optimal policy and optimal value function- A policy π is better than other policy π′ if
its expected discounted cumulative reward is greater than or equal to that of π′ for all states
means V π(s) ≥ V π′(s) for all s ∈ S. There is always at least one policy that is better than
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or equal to all other policies. This is an optimal policy π∗ which is defined as

V ∗(s) = max
π

V π(s),∀s ∈ S (2.8)

Optimal policies also share the same optimal action-value function, denoted Q∗ , and de-
fined as

Q∗(s, a) = max
π

Qπ(s, a),∀s ∈ S&a ∈ A (2.9)

And the optimal deterministic policy can be given as-

π∗(.|s) = argmax
a

Q∗(s, a) (2.10)

Definition 2.4. (Reinforcement Learning). Reinforcement learning (RL) provides a com-
putational framework for learn to control autonomously from interactions with the sur-
rounding world and concerned with sequential decision making in unknown environments.

2.1.1 Types of RL algorithms

Here we only discuss model-free and model-based RL algorithms briefly. In Model-
based RL algorithms agent learn the optimal policy by estimating T and R from state and
reward samples. In Model-free algorithms the agent do not estimate T and R functions,
instead of that it these directly either estimate value function of a policy and then improve
the policy (value based methods) or directly find the optimal policy (policy gradient based
methods).

2.1.1.1 Policy Gradient Based

In this type of algorithm parametrized policy π(θ) is used. And the reinforcement
learning objective J(π(θ)) is optimized wrt parameter θ to obtain the optimal policy π∗ =

π(θ∗).
θ∗ ← argmax

θ
J(π(θ)) (2.11)

2.1.1.2 Value Based

In this type of algorithm the optimal policy π∗ is obtained explicitly by obtaining the
near optimal state-action value function Qπ(s, a). The approximate value of Qπ(s, a) can
be estimated by using Monte-Carlo or temporal difference methods. This kind of algorithm
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involve two steps first is policy evaluation-

Qπk
k+1(s, a) = r(s, a) + Es′,a′ [Q

πk
k (s′, a′)]

and second step is policy improvement-

πk+1 ← argmax
a

Qπk
k+1(s, a)

2.1.1.3 Model Based

In this type of algorithm we explicitly learn the model of the system (transition function
and reward function) from some regression based methods. This learned model can be
utilized for planning at test time, often by means of model-predictive control (MPC), or
can be combined with model free methods (value based and policy gradients based) to find
the optimal policy like Dyna algorithm.

2.2 Bayesian Optimization

It is an approach to optimize a priori unknown objective function f(x), by modelling
the function using Bayesian regression methods which captures the uncertainty over the
function. So it is a technique, focused on solving the problem

max
x∈X

f(x)

where X ⊆ Rd, which is in literature known as design space or parameter space or action
space.
The formal problem setting of Bayesian optimization can be formulated by by agent-
environment interaction (see Figure 2.1) with a fixed state or stateless setting which is
also known as bandit setting. So at each time agent select xt ∈ X , and interact with the
environment to evaluate the noisy observation yt of the function f(x) at xt. And add (xt, yt)
to the buffer or the train set from which it update the model of the function which maintain
the Bayesian belief or posterior over what this unknown objective function f(x) might be
given the observations it has collected so far.
There is two main ingredient in Bayesian optimization, first is the model class for that
we use Gaussian process (which is discussed in next section 2.3 ) to model the function
which captures the structural and measurement uncertainty. Second is sampling criteria
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from which we sample the next x and we evaluate the function f(x) at x.

2.2.1 Safe Bayesian Optimization

In safe Bayesian optimization instead of optimizing the unknown objective function
f(x) globally, it finds the maximizer within the safe set that is defined by safety constraints
which not known to agent. So This safe set is not known initially, but estimated after each
safety constraints evaluation. So it is a technique, focused on solving the problem

max
x∈X

f(x) such that g(xt) ≥ 0, ∀t with probability ≥ 1− δ

The formal problem setting of the safe Bayesian optimization can be explained by agent-

Figure 2.2: The agent–environment interaction in safe Bayesian optimization.

environment interaction (see Figure 2.2, only one safety constrain is considered could be
multiple). So at time t agent select a action xt from the estimated safe set (every x in the
estimated safe set should satisfy the safety constrain with high probability.) and interact
with the environment and observe the noisy observations yt and zt of the objective function
f(x) and safety function g(x) at xt respectively. And add (xt, yt, zt) to the buffer or train set
from which it update the Bayesian belief about the unknown objective and safety function.

2.3 Gaussian Process Regression

Regression is the problem of fitting a function f given a set of feature vectors xi ∈ Rd

and target vector yi = f(xi) + εi ∈ R which corresponds to the function values fi, where
εi is a noise term. In the context of the reinforcement learning, regression problem arises
frequently. For example, in model-based reinforcement learning estimating the unknown
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transition function (which defines the dynamics of the system ) and unknown reward func-
tion, or in safety-critical system estimating the safety functions comes under in regression
problem. Due to the structural and measurement uncertainty, the estimate of the function f
is uncertain. To capture this uncertainty in terms of a probability distribution, the Bayesian
inference-based Gaussian process (GP) framework is widely used.

Definition 2.5. A Gaussian process is defined as a distribution over functions and can be
generalized by the infinite-dimensional normal distribution. Rasmussen and Williams [21]
define the Gaussian process as a collection of random variables which have a joint Gaussian
distribution.

A Gaussian process is characterized by its mean functionm(x) and covariance function
k(x, x′), which are defined as

m(x) = E[f(x)],

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (2.12)

and will write the Gaussian process as

f(x) ∼ GP(m(x), k(x, x′)) (2.13)

without loss of generality mean function m(x) can be assumed to zero.

In our case the random variable represent the value of the function f(x) at location x,
those joint distribution is given by multivariate normal distribution and it’s mean can be
assumed to be zero and covariance matrix is given by the covariance function which define
the smoothness of the function. In the Gaussian process regression, we denote (X,y)

as training set where X := [x1, ..., xn]is a design matrix and, y := [y1, ..., yn]> is the
target vector. And yi is generated according to yi = f(xi) + εi, where f : Rd → R
and εi ∼ N(0, σ2

ε ) is independent Gaussian measurement noise. GPs consider f as a
random function and infer a posterior distribution p(f |X,y) over f from the GP prior
p(f). The posterior is used to make predictions about function values f(x∗) at arbitrary
inputs x∗ ∈ Rd.
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2.3.1 Bayesian Inference within GP framework

To find the posterior distribution over the function f we use the Bayesian inference
technique which can be considered as a three-step procedure:

• First, define a prior on the function f .

• Second, observe the data points.

• Third, calculate the posterior distribution over f by refining the prior distribution
using the information from the data points.

2.3.1.1 GP Prior

For the given hyper-parameter θ GP prior is defined as -

p(f |θ) = GP(mf , kf ) (2.14)

where mean function mf can be assumed to zero with loss of generality and the covariance
function is define by kf = kSE(xp, xq) + δpqσ

2
ε . Where kSE is a squared exponential

function which is defined by

kSE(xp, xq) = α2 exp (− 1

2l2
(xp − xq)T (xp − xq)) (2.15)

where α is the signal variance of the function f , l is the length scale and σ2
ε is the noise

variance. These parameters combined vector is defined as hyper-parameter θ.

2.3.1.2 GP Posterior

After n observation the training set (X,y) is X := [x1, ..., xn], y := [y1, ..., yn]. From
this information the prior belief over the function f is updated to get the posterior distribu-
tion over f using Bay’s theorem

p(f |X, y, θ) =
p(y|f,X, θ)p(f |θ)

p(y|X, θ)
(2.16)

where p(y|X, θ) is the normalizing constant, also known as the marginal likelihood or
evidence is independent of f and given by

p(y|X, θ) =

∫
p(y|f,X, θ)p(f |θ) df (2.17)
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We assume that the observations yi are conditionally independent given X . Therefore, the
likelihood of f factors according to

p(y|f,X, θ) =
n∏
i=1

p(yi|f(xi), θ) =
n∏
i=1

N(yi|f(xi), σ
2
ε ),

= N(y|f(X), σ2
ε I) (2.18)

For given hyper-parameters θ, the Gaussian likelihood p(y|X, f, θ) in equation (2.18) and
the GP prior p(f |θ) lead to the GP posterior

p(f |X, y, θ) ∝ (N(y|f(X), σ2
ε I))(N(0, kf )) (2.19)

p(f |X, y, θ) = GP(Ef [f(x̃)|X, y, θ], covf [f(x̃), f(x′)|X, y, θ]) (2.20)

So, the posterior distribution is also given by Gaussian process, whose mean function and
a covariance function are given by

Ef [f(x̃)|X, y, θ] = kf (x̃, X)(kf (X,X) + σ2
ε I)−1y (2.21)

covf [f(x̃), f(x′)|X, y, θ] = kf (x̃, x
′)− kf (x̃, X)(kf (X,X) + σ2

ε I)−1kf (X, x
′) (2.22)

where x̃, x′ ∈ Rd are the test inputs. we write kf (X, x′) for [kf (x1, x
′), ..., kf (xn, x

′)] ∈
Rn×1 . Note that kf (x′, X) = kf (X, x

′)T .

2.3.1.3 Predictive Distribution

To make predictions for a test case we average over all possible functions, weighted by
their posterior probability. Thus the predictive distribution for f∗ , f(x∗) at x∗ is given by
averaging the output of all possible function values w.r.t. the GP posterior.

p(f∗|x∗, X, y) =

∫
p(f∗|x∗, f)p(f |X, y, θ) (2.23)

So the predictive distribution is also given by Gaussian process whose mean function and
covariance function is given by in equations (2.25) and (2.28) respectively.
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The function values for test inputs and training inputs are jointly Gaussian, that is,

P (f, f∗|X,X∗) ∼ N

([
mf (X)

mf (X∗)

]
,

[
K kf (X,X∗)

kf (X∗, X) kf (X∗, X∗)

])
(2.24)

where K the kernel matrix with Kij = kf (xi, xj).
Univariate Predictions: x∗ ∈ RD , y∗ ∈ R

µ∗ := mf (x∗) := Ef [f(x∗)|X, y] = kf (x∗, X)(K + σ2
ε I)−1y (2.25)

= kf (x∗, X)β =
n∑
i=1

βik(xi, x∗) (2.26)

σ2
∗ := σ2

f (x∗) := varf [f(x∗)|X, y] (2.27)

= kf (x∗, x∗)− kf (x∗, X)(K + σ2
ε I)−1kf (X, x∗) (2.28)

2.3.2 Pseudo Code

Algorithm 2.1: Gaussian Process Regression [21]
Input: training set (X,y), k (covariance function), σ2

n (noise variance) , x∗ (test
input)

Output: f∗ (mean), V[f∗] (variance), log p(y|X) (log marginal likelihood)
1 L := cholesky(K + σ2

nI)
2 α := LT /(L /y)
3 f̄∗ = kf (x∗, X)Tα . predictive mean eq. (2.25)

4 v := L /kf (x∗, X)

5 V[f∗] := kf (x∗, x∗)− vTv . predictive variance eq. (2.28)

6 log p(y|X) := −1
2
yTα−

∑
i logLii − D

2
log 2π

Explanation of algorithm 2.1 : to find the function value at test point x∗, f(x∗) =

kf (x∗, X)TK−1
y y, where Ky = K + σ2

nI . Compute the lower triangular matrix L from
the cholesky decomposition of Ky = LLT (Line 1). In line 2 compute the α = K−1

y y =

(LLT )−1y. Predictive mean at test point x∗ is given by f̄∗ = kf (x∗, X)Tα(Line3). At line
5 we are computing Variance at x∗.
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(a) The colored dotted curves are the func-
tions sampled from the GP prior, without ob-
serving any data points so the uncertainty
about the true function is uniform every-
where.

(b) The colored dotted curves are the func-
tions sampled from the GP posterior after ob-
serving some data points (black crosses) and
the solid black curve is the true function and
the gray shaded area shows the uncertainty
about it which is less near to observed data
points and high elsewhere.

Figure 2.3: Samples from GP prior and GP Posterior.

2.3.3 Effect of hyper-parameters on smoothness of the function

In section 2.3.1.1 we define the prior distribution over the f as Gaussian process with
zero mean function and covariance function is defined by squared-exponential function
(see eqn. 2.15) which is specified by parameters α and l that controls the smoothness of
the function.

2.3.3.1 Effect of length scale (l) variation.

(a) l2 = 1 (b) l2 = 0.2 (c) l2 = 2.0

Figure 2.4: Effect of length scale variation.

In fig. 2.4, black crosses are the training points, gray shaded area is the confidence
interval, the red doted line is the predicted mean function and the black solid line is the
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actual function.
When the length scale l is small, the nearby data-points are also less correlated and the
function varies drastically with x as we can see in fig. (2.4b) the red dot line changes
drastically with x. And for large l the data-points are highly correlated so the function (red
dot line in (2.4a), (2.4c))) changes smoothly with x. So we say l controls the horizontal
length-scale.

2.3.3.2 Effect of signal variance α variation.

(a) σ2 = 1 (b) σ2 = 0.2 (c) α2 = 5.0

Figure 2.5: Effect of signal variance variation.

For small value of α the shaded gray area is also small (2.5b)), and for large value of α
the shaded area is also large (2.5c)). So we say α controls the vertical length-scale.

2.3.4 Learning Hyper-parameters via Evidence Maximization

We have calculated the GP posterior over f for the setting where we assume that the
hyper parameter θ is known. In this section we take hyper-parameter θ as a latent variable
because we don’t know their values a priori. We place a hyper-prior p(θ) on the hyper-
parameter. So the two-level Bayesian inference is given by: [22]
Level-1 Inference :
The GP posterior on the function f for given hyper-parameter is

p(f |X, y, θ) =
p(y|X, f, θ)p(f |θ)

p(y|X, θ)
(2.29)

Level-2 Inference :
The posterior on the hyper-parameters is

p(θ|X, y) =
p(y|X, θ)p(θ)

p(y|X)
(2.30)
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The posterior distribution over θ is proportional to the marginal likelihood-

p(θ|X, y) ∝ p(y|X, θ) (2.31)

log(p(y|X, θ)) = log

∫
p(y|f,X, θ)p(f |θ)df

= −1

2
yT (Kθ + σ2

ε I)−1y − 1

2
|Kθ + σ2

ε I| −
D

2
log(2π) (2.32)

by maximizing the log marginal likelihood in equation (2.32) over the hyper-parameters,
we find the best θ

θ̂ ← argmax
θ

log p(y|X, θ) (2.33)

2.3.5 GP based Safe Exploration Algorithms

A GP is well suited for safety-critical problem settings in which the unknown safety
functions are modelled using GP, and the uncertainty of these functions are given by the
confidence interval (i.e. variance) of their respective Gps. The confidence interval are used
to take an action which is safe with high probability. Previous work on safe exploration
using GPs has addressed both stateless settings (Sui et al. 2015 [6]) and stateful settings
(Turchetta, Berkenkamp, and Krause 2016 [23]; Wachi et al. 2018 [7]). In the following
section we will explain the SAFEOPT (safe exploration in Bandit or stateless setting) and
SafeMDP algorithm (safe exploration in MDP or stateful setting).

2.3.5.1 SAFEOPT Algorithm

To guarantee safety in bandit setting problems Sui et al. [6] proposed SAFEOPT algo-
rithm. The objective is to optimize a unknown function f(x) subject to safety constraint.
For that they have used safe Bayesian optimization framework (see section 2.2.1). In their
setting they considered the safety as, for chosen action/parameter xt at time t the function
value f(xt) should greater than a safety threshold h. Thus the authors approach the prob-
lem of estimating the maximum of the unknown function f(x) by estimating f(x) using
Gaussian process (GP) regression. In GP regression, the unknown function is assumed to
be modelled by a sample function from a GP prior [21]. The GP prior is completely char-
acterized by its mean function µ(x) (without loss of generality µ(x) = 0) and covariance
function k(x, x′) where x, x′ ∈ X . At every time t, the Safe-Opt policy chooses a point
xt and receives an observation yt = f(xt) + nt where nt is an independent sample from
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Gaussian noise with mean 0 and variance σ2. Based on yt a posterior distribution for the
unknown function can be derived. This posterior distribution is again Gaussian and char-
acterized completely by a mean function µt(x) and covariance function kt(x, x′). In order
to satisfy the safety constraints, Safe-Opt computes upper and lower confidence bounds on
the function using this posterior. The upper ut(x) and lower lt(x) confidence bounds are
defined as

ut(x) = µt(x) + βtσt(x),

lt(x) = µt(x)− βtσt(x).

And it uses the confidence interval Qt(x) = [lt(x), ut(x)] to estimate a safe set St ⊂ X ,
from which agent select a next query point xt+1 for which the function value f(xt+1) is
greater than safety threshold with high probability. Safe Set St is defined as:

St ← ∪x∈St−1{x′ ∈ X |lt(x)− Ld(x, x′) ≥ h}

where L is lipschitz constant. SafeOpt assume at t = 0 it is provided with a initial safe
seed S0. Since the safe seed may not achieve the maxima of f(x) it need to explore safely.
Safe-Opt maintains a set Gt ⊆ St of candidate decisions that, upon potentially repeated
selection, have a chance to expand St. The set Gt is defined as

Gt = {x ∈ St|ψt(x) > 0} (2.34)

where
ψt(x) = |{x′ ∈ X \ St|ut(x)− Ld(x, x′) ≥ h}|.

In order to find the maxima SafeOpt maintain a another set Mt ⊆ St of decisions that are
potential maximizers of f .

Mt = {x ∈ St|ut(x) ≥ max
x′∈St

lt(x
′)} (2.35)

Safe-Opt policy then chooses points xt according to

xt = argmax
x∈Gt∪Mt

wt(x). (2.36)

where wt(x) = ut(x)− lt(x).
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The pseudo code for SafeOpt algorithm is given below. For high level description of
SafeOpt please refer the Sui et. al. paper [6].

Algorithm 2.2: SAFEOPT [6]
Input: Function domain X , GP prior (µ, k), signal variance parameter σ0, seed set

S0, safety threshold h,Lipschitz constant L.
1 C0(x)← [h,∞),∀x ∈ S0

2 C0(x)← R,∀x ∈ X − S0

3 Q0(x)← R, ∀x ∈ X
4 for t = 1, .. do
5 Ct(x)← Ct−1(x) ∩Qt−1(x)

6 St ← ∪x∈St−1{x′ ∈ X |lt(x)− Ld(x, x′) ≥ h}
7 Gt ← {x ∈ St|gt(x) > 0}
8 Mt ← {x ∈ St|ut(x) ≥ maxx′∈St lt(x

′)}
9 xt ← argmaxx∈Gt∪Mt

(wt(x))

10 yt ← f(xt) + nt

11 Compute Qt(x), ∀x ∈ St
12 if maxx∈Gt∪Mtwt(x) ≤ ε then Break

13 end

2.3.5.2 SafeMDP Algorithm

To guarantee safe exploration in finite MDP with known transition function and un-
known safety function Krause et al. 2016 [4]) proposed the SAFEMDP algorithm. The
safety function f(.) is modelled using the Gaussian process regression. Then SafeMDP
uses the posterior distribution over f(.) to estimate St the set of states which are safe. And
maintain a set Ŝt ⊆ St which consider those states from St that are reachable from and
returnable to previous set Ŝt−1. The Safe set St at time t is defined by:

St ← {x ∈ S|∃s′ ∈ Ŝt−1 : lt(s)− Ld(s, s′) ≥ h}

Even if the all states in set St satisfies the safety constraints with high probability but they
might not be reachable from and returnable to previous safe set. So they defined reachable
set as, a set of states which are reachable by agent from a given set X in one step-

Rreach(X ) = X ∪ {s ∈ S|∃s′ ∈ X , a ∈ A : s = f(s′, a)}
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And from the set X the set of states from which the agent can return to X̄ .

Rret(X , X̄ ) = X̄ ∪ {s ∈ X |∃a ∈ A : f(s, a) ∈ X̄}

So, the returnable set is defined as a set of states that can reach X̄ through agent in multiple
steps within X is R̄ret(X , X̄ ). By using these definition set S̄t , is defined as

Ŝt ← {s ∈ St|s ∈ Rreach(Ŝt−1) ∩ R̄ret(St, Ŝt−1)}

SafeMDP maintain another set Gt ⊆ S̄t, by choosing next visiting state from it could
increase the safe region.

Gt ← {s ∈ Ŝt|gt(s) > 0}

where
gt(s) = |{s′ ∈ S/St|ut(s)− Ld(s, s′) ≥ h}|

And the next state st is sampled according to-

st ← argmax
s∈Gt

(wt(xs))

The pseudo code for SafeMDP algorithm is given below. For high level description of
SafeMDP please refer the krause et. al. paper [4].

Algorithm 2.3: SAFEMDP [23]
Input: states S, actions A, transition function f(s, a), kernel k(s, s′), Safety threshold h, Lipschitz constant L, Safe seed

S0 .
1 C0(x)← [h,∞), ∀x ∈ S0

2 C0(x)← R, ∀x ∈ S − S0

3 Q0(x)← R, ∀x ∈ S
4 for t = 1, .. do
5 Ct(x)← Ct−1(x) ∩Qt−1(x)

6 St ← {x ∈ S|∃s′ ∈ Ŝt−1 : lt(s)− Ld(s, s′) ≥ h}
7 Ŝt ← {s ∈ St|s ∈ Rreach(Ŝt−1), s ∈ R̄ret(St, Ŝt−1)}
8 Gt ← {s ∈ Ŝt|gt(s) > 0}
9 st ← argmaxs∈Gt

(wt(xs))

10 Safe Dijkstra in St from st−1 to st
11 Update GP with st and yt ← f(xt) + nt

12 Compute Qt(x), ∀s ∈ Ŝt
13 if Gt = ∅ or maxs∈Gt∪Mtwt(s) ≤ ε then Break

14 end
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2.4 Reinforcement learning for Dynamically Varying En-
vironments

In dynamically varying environment the model/context of the environment changes
with time, which comprises of the state transition probability (T (st+1|st, at)) and reward
function R. The environment dynamism can be continuous and discontinuous/switching.
Figure 2.6 illustrate the time varying environment in which agent observe the reward value
and next state according to the current context of the environment.

Figure 2.6: Reinforcement learning with dynamically varying environments.

Definition 2.6. [14] Formally the dynamically varying environment can be defined as a
group of MDPs {Mk}k∈N+ , where Mk =< S,A, Tk, Rk, γ > with usual notation defined
in (2.1).

Change-point is the time instance at which the context of the environment changes. let
say H1 is the first time instance at which context changes means model of the environment
changes from Mk0 to Mk1 . And the model of the environment changes from Mk1 to Mk2 at
change-point H2 and so on. where H1 < H2.... With respect to these model changes, the
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non-stationary dynamics function for t ≥ 0 will be

T (st+1 = s′|st = s, at = a) =



Tk0(s
′|s, a) for t ≤ H1

Tk1(s
′|s, a) for H1 ≤ t ≤ H2

.

.

(2.37)

and the reward for (st, at) = (s, a) will be

R(s, a) =



Rk0(s, a) for t ≤ H1

Rk1(s, a) for H1 ≤ t ≤ H2

.

.

(2.38)

if we incorporate the safety function (g : S ×A→ R) in this setting, it’s also changes with
the change in the context, and given by

g(s, a) =



gk0(s, a) for t ≤ H1

gk1(s, a) for H1 ≤ t ≤ H2

.

.

(2.39)

According to how the context of the environment is changing, based on that dynamism
of the environment is defined. If the context of the environment is changing at every time
instance (Hi+1 = Hi + 1) means that dynamism is continuous. If Hi+1 = Hi + Ni than
the dynamism is discontinuous or switching type, where Ni is the number of time instance
in between change-point Hi+1 and Hi. If H1 = ∞ then environment is stationary, not
changing with time. Depending on the horizon H , the number of such changes will be ei-
ther finite or infinite. And these change-points can be detected by using some change point
detection algorithm like Bayesian online change point detection (BOCD) [24],etc. (if we
have sufficient data points in between a change-point).

In this chapter we have seen the mathematical formulation of reinforcement learning
problems and types of reinforcement learning algorithms to solve these problems and dis-
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cussed about safe Bayesian optimization framework to optimize the unknown function
safely by using Gaussian process to model the uncertainty of the function. In the following
chapter we will use the dynamically varying environment definition to define our problem
statement for safe exploration and optimization in switching/discontinuous dynamism en-
vironment.
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Chapter 3

Safe Exploration in Switching Environ-
ment

In this chapter we consider the problem of safe exploration in switching environments
for which we have proposed an Adaptive Safe-Explore policy that incorporates Bayesian
inference and change detection-based scheme, which is an extension of SafeOpt algorithm
[4] to switching environments but doesn’t incorporate optimization. This policy balances
two objectives: the first is to expand the safe region from the initial safe seed, and the
second to detect the change point. We evaluate and compare its performance with baseline
policies via simulation.

3.1 System Model and Problem Statement

We consider a discrete time model for the safe exploration problem with time indexed
by t ∈ Z+. The objective of the safe exploration problem is to find the maximum safely
reachable region from the initial safe seed S0 (which is known) of a time varying unknown
function f(x, t) where x ∈ X ⊆ R. We define the true safe region at every time t by

Sttrue = {x ∈ X : f(x, t) ≥ h}, (3.1)

where h ∈ R is chosen to be less than maxx f(x, t),∀t, is a safety threshold. We as-
sume that f(x, t) is a Lipschitz continuous function of x on a compact set X ⊆ R for
every t. The Lipschitz constant is assumed to be L. In this chapter we consider func-
tions which model switching of the environment characteristics, the function f(x, t) is
assumed to be f1(x) until a time tc (i.e., f(x, t) = f1(x),∀t ∈ {0, 1, . . . , tc − 1} and
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f(x, t) = f2(x), ∀t ∈ {tc, tc + 1, · · ·}. We consider the problem with only one change1.
We also assume that ∀x, |f1(x)− f2(x)| ≤ B, where B is a constant.

We note that Sttrue is unknown, since f(x, t) is not known. However, we consider a
setting in which, we estimate the Sttrue at each time t by observing the noisy value of the
function at points xt ∈ X which are chosen for every time t. The observed value at time
t is denoted as yt. At each time t the xt is chosen in such a way that the probability
p(xt ∈ Sttrue) ≥ 1− δ,∀t.

We define policy π as a sequence of xt chosen by the agent. The sequence xt could
be chosen as a function of the history of choices, i.e., (x0, x1, . . . , xt−1) as well as the
observations (y0, y1, . . . , yt−1). We first define the following metrics and formulate the
problem in terms of them.

We define Cπ(t) as percentage coverage of true safe set Sttrue at time t from the initial
safe seed S0 by

Cπ(t) =
|St ∩ StT rue|
|StT rue|

× 100

where St is estimated safe set at time t. We also define the cumulative unsafe evaluations
over a horizon T as

Uπ(T ) =
∑
t

I {f(xt, t) < h},

where I is the indicator function. Our objective is to find a policy π such that the Cπ(t) is
maximized for all t subject to a safety constraint.

max
π

Cπ(T ) such that
Uπ(T )

T
≤ δ. (3.2)

where δ ∈ (0, 1).
Ideally, we would want a policy π that achieves the above maximum for any choice

of f1 and f2. We evaluate the performance of a policy by considering the average of the
above metrics over choices of the function pair (f1, f2) and we also use another metric
MAE (mean absolute error) over test points to compare between the policies.

1We note that the algorithms proposed in this chapter can be extended to the case of multiple changes
without any change.
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3.2 Adaptive Safe-Explore

In this section, we propose a heuristic policy (Adaptive Safe-Explore) that extends Safe-
Opt [6] to adapt to the switches in f(x, t). In contrast to Safe-Opt, Adaptive Safe-Explore
is not optimizing the function but balances two objectives: the first is to expand the safe
region from the initial safe seed, and the second to detect the change point. For the former
objective it maintain a setGt ⊆ St of candidate decisions that, upon potentially repeated se-
lection, have a chance to expand the safe set St . The definition of St and Gt are considered
same as of SafeOpt (see section 2.3.5.1. The safe set St is defined by

St = {x ∈ X |lt(x) ≥ h}

The expander set Gt is defined by

Gt = {x ∈ St|ψt(x) > 0}

where
ψt(x) = |{x′ ∈ X \ St|ut(x)− Ld(x, x′) ≥ h}|.

In order to balance between the need to detect a change as well as maximizing the safely
reachable region, we use an ε-greedy approach for Adaptive Safe-Explore. At every time t
we choose

xt =

argminx∈St wt(x) with ε probability

argmaxx∈Gt wt(x) with 1− ε probability
(3.3)

We note that an intuitive approach to adapting to the change in the function f(.) is to detect
whether a change has happened and then start exploring safely again. The challenges here
are therefore to quickly detect the change as well as to find a safe seed. We note that the
following is a candidate rule which can be used to detect a change. At each time step t we
observe a noisy observation of function f , yt = f(t, xt) + nt, from which we update the
GP model of function, where xt is sampled according to the above sampling criteria. To
detect the change-point, at every time step we check the condition that the observed yt is
within the current confidence interval Qt or not. If yt ∈ Qt(xt) then the algorithm decides
that the function has not changed. If yt 6∈ Qt(xt) then Adaptive Safe-Explore declares that
the change-point has detected and the function has changed.

Suppose a change has been detected, then we also need to estimate a new safe set St. If
the yt at the declared change time is safe, then the new safe seed is xt itself. On the other
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hand if yt < h, then we initialize a safe-set estimate defined as

St = {x ∈ X |lt−1(x)−B ≥ h}

Here we make use of the assumption that |f1(x) − f2(x)| ≤ B, ∀x. It may turn out that
St = ∅ or not. If St 6= ∅ then we have a safe set and we continue with Safe-Opt as before.
However, if St = ∅ according to the above rule then we pick a xt+1 from argmax lt(x)

where we note that xt although unsafe has been used to update the GP. At change-point we
reinitialize the GP. The complete algorithm is given in Algorithm 3.1. We note that a few
practically motivated modifications are introduced in Algorithm 3.1. First of all, consider
that case in which we have some prior information about the inter-change duration, e.g., we
know that the inter-change duration is at least some number of slots. Then, we note that the
ε-greedy policy need not be used immediately after a change-point. We incorporate this by
not using the above ε-greedy policy until a counter expires. In order to control the number
of data points which need to be stored at every instant to update the GP posterior, we also
introduce a data window. The data window size is incremented by one until a maximum
window size (window_max) is reached. We note that an intuitive method to handle a time-
variant environment is to consider data only in the immediate past. In order to evaluate
how the Adaptive Safe-Explore policy compares with such a policy we also consider a
FixedWindow Safe-Explore policy defined as follows. The FixedWindow-SafeOpt policy
has a parameter window. For FixedWindow Safe-Explore, the GP model for f(x, t) is
updated at every time t using (xt−window+1, . . . , xt) and (yt−window+1, yt). Then the sets
Qt(x) and Gt are computed and xt+1 is chosen as

xt = argmax
s∈Gt

wt(x).

3.3 Baseline Algorithms

In this section we discuss “Genie” algorithms which have access to extra or side infor-
mation. Genie policies are not practically implementable since they assume the availability
of such information, but are used to obtain insights into the best possible performance of
policies in the case of switching functions.
Genie-CP-SS: This is a policy that has knowledge of the time tc at which change point
happens as well as the true safe seed set for f2 after switching. We note that a function
(f1 or f2) may have multiple disjoint intervals in the true safe set. We assume that a single
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Algorithm 3.1: Adaptive Safe-Explore
Input: Function domain X , GP prior (µ, k), signal variance parameter σ0, seed set S0, safety threshold h, window_min,

window_max, delaychangedetection_flag = True, changepoint_flag =False, changedetection_delay,
counter = 0, changepoint_index = 1, B, ε.

1 Initialize GP with safe seed points S0 and compute Q0

2 for t = 1, .. do
3 if changepoint_flag = false then
4 St ← {x ∈ X|lt(x) ≥ h}
5 Gt ← {x ∈ St|ψt(x) > 0}
6 else
7 St ← {x ∈ X|lt−1(x)−B ≥ h}
8 Gt ← {x ∈ St|ψt−1(x) > 0}
9 changepoint_flag = False

10 end
11 if delaychangedetection_flag = True then

12 xt ←
{

argmaxx∈Gt
(wt(x)) if St 6= ∅

argmaxx∈X (lt(x)) if St = ∅
13 yt ← f(xt) + nt
14 window = window + window_increment
15 counter = counter + 1
16 if window > window_max then
17 window = window_max
18 end
19 if counter = changedetection_delay then
20 counter = 0,
21 delaychangedetection_flag = False.
22 end
23 else

24 xt ←


argminx∈St

wt(x) with ε probability
argmaxx∈Gt

wt(x) with 1− ε probability
argmaxx∈X (lt(x)) if St = ∅

25 yt ← f(xt) + nt
26 if yt < lt(xt) or yt > ut(xt) then
27 window = window_min
28 changepoint_index = t
29 delaychangedetection_flag = True
30 changepoint_flag = True

31 else
32 window = window + window_increment
33 if window > window_max then
34 window = window_max
35 end
36 end
37 end
38 start = t− window
39 if start < changepoint_index then
40 start = changepoint_index
41 end
42 update GP using (xstart, . . . , xt) and (ystart, . . . , yt).
43 Compute Qt(x),∀x ∈ X
44 end

point from each of these disjoint intervals is given as part of the safe seed set to Genie-
CP-SS. Then, for t < tc Genie-CP-SS uses Safe-Opt which is initialized with the safe
seed, and for t ≥ tc Safe-Opt can be re-initialized with the new safe seed and used. This
policy chooses xt = argmaxx∈Gt(wt(x)). We note that since tc as well as the safe-seed
set is known, Genie-CP-SS should achieve the maximum possible value of Cπ(t) with the
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minimum number of unsafe evaluations and provides an useful baseline for comparing with
Adaptive Safe-Explore.
Genie-CP: This policy has side information only about the change point and not about the
safe seed when a change happens. At tc if ytc ≥ h, then we re-initialize Stc = xtc and then
for t > tc, the policy chooses xt according to xt = argmaxx∈Gt(wt(x)). Otherwise, we
choose xt as argmaxx∈X lt(x). The performance of Genie-CP would indicate the loss in
performance due to the non-knowledge of safe seed set.
Genie-SS: This policy has side information of the safe seeds. However, it does not know
the change point and uses a change point detection scheme as follows (this is similar to
used by Adaptive Safe-Explore). At every time t, if the algorithm is allowed to do change
detection (see discussion about incorporating prior information about change point times
for Adaptive Safe-Explore), and if the current observation yt 6∈ Qt(xt) Genie-SS declares
that a change has happened. Once a change is declared to have happened, the genie is given
one safe seed each from each of the disjoint intervals which makes up the true safe set S∗t .
Similar to Genie-CP, the performance of Genie-SS would indicate the loss in performance
due to non-knowledge of the change point.

3.4 Simulations and Performance Analysis

For comparing the performance of the algorithms proposed above, we consider one-
dimensional functions f1(x) and f2(x) which are sampled from a GP prior. The safety
threshold h is assumed to be 0 without loss of generality. The mean function µ(x) is as-
sumed to be 0 and the covariance function is specified by a radial-basis function kernel
(parametrized by variance of 4 and length scale of 1). When sampling f2 we restrict to
those samples such that ∀x, |f1(x) − f2(x)| ≤ B, where B is fixed to be 2.5. We also
sample f1 and f2 such that both f1(0) > 0 and f2(0) > 0 so that there is at least one point
in the safe set for both functions. In our experiments, we consider one change point at
tc = 100. The time horizon is assumed to be 200. In the experiment shown below, we
draw 20 samples of function pairs f1 and f2 and the performance metrics are averaged over
these samples with standard deviation around the mean. For each pair of functions, the
initial safe seed is the same for Adaptive-SafeOpt and Genie-CP; also the safe-seed set is
the same for Genie-CP-SS and Genie-SS.
In Figure 3.1 we illustrate Cπ(t) for the different algorithms as a function of time. We plot
the average of Cπ(t) over the 20 samples of (f1, f2) with the standard deviation around
the mean. We observe that the policies Genie-CP-SS, and Genie-SS are able to cover the
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Figure 3.1: Comparison of Cπ(t) as a function of t for different algorithms. The change
point tc = 100. In this illustration, we assume that there is no observation noise.

approx whole true safe set Strue of functions f1 and f2, before and after the change point
tc. We also note that the proposed Adaptive Safe-Explore as well as Genie-CP are able
to cover the 100% of a disjoint set of true safe set Strue of f1 for which initial safe seed
S0 is given and also cover the 100% of a disjoint set of true safe set Strue of f2 for which
agent finds the a initial safe point. The FixedWindow-SafeOpt algorithm is able to cover
the 100% of a disjoint set of true safe set Strue of f1 for which initial safe seed S0 is given
and cover the approx whole true safe set Strue of function f2 after the change-point.

In Figure 3.2 we illustrate mean absolute error MAE(t) between true function value and
predicted value from GP at test points (which are uniformly sampled from the input space
X ) for the different algorithms as a function of time. We plot the average of MAE(t) over
the 20 samples of (f1, f2) with the standard deviation around the mean. We observe that the
policies Genie-CP-SS, and Genie-SS are able to achieve the minimum MAE on test points
for functions f1 and f2 because they are able to explore the whole true safe region for f1

and f2 as seen in Figure 3.1. We also note that the MAE(t) for the proposed Adaptive Safe-
Explore as well as Genie-CP is more compare to the policies Genie-CP-SS, and Genie-SS
because they explore only a disjoint set of true safe set of f1 and f2. The MAE(t) for the
FixedWindow Safe-Explore is same as Adaptive Safe-Explore and Genie-CP for function
f1 means before the change point tc and after tc for some time MAE(t) is large but after that
it achieve the minimum MAE on test points for function f2.

We illustrate the cumulative number of unsafe evaluations Uπ(T ) for the different poli-
cies in Figure 3.3. Interestingly, we find that on average, Uπ(T ) increases for those policies
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Figure 3.2: Comparison of MAE(t) as a function of T for different algorithms. The change
point tc = 100.

for which the side information about the safe set is not available.
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Figure 3.3: Comparison of the cumulative number of unsafe evaluations Uπ(T ) as a func-
tion of T for different algorithms. The number of unsafe evaluations increase at the change
point tc.

This is found to happen because the proposed algorithms get attracted to local maxima,
which are unsafe. Another set of experiments where the averaging is done by excluding
such examples confirm this; see Figures 3.4 and 3.5.
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Figure 3.4: Comparison of the cumulative number of unsafe evaluations Uπ(T ) as a func-
tion of T for different algorithms. The cases where the local maxima in unsafe region after
change-point occurs are excluded in the average.
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Figure 3.5: Comparison of MAE(t) as a function of T for different algorithms. after ex-
cluding the cases in which the local maxima occurs. The change point tc = 100.

3.5 Conclusions

we formulated the problem of safe exploration in switching environments. We pro-
posed a heuristic algorithm called Adaptive Safe-Explore for this purpose and evaluated
the performance of the algorithm via simulations. We observed that a major challenge for
extending safe exploration to switching environments is finding a safe point to continue
exploration when there is a change in the unknown function. We find that on average,
Uπ(T ) increases for those policies for which the side information about the safe set is not
available after the change-point. This is found to happen because the proposed algorithms
get attracted to local maxima, which are unsafe.
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Chapter 4

Safe Sequential Optimization for Switch-
ing Environments

In this chapter we consider the problem of safe sequential optimization of a time vary-
ing unknown function for which we have proposed an Adaptive-SafeOpt policy that is an
extension of the Adaptive Safe-Explore policy to also include optimization. This policy bal-
ances three objectives: the first is to expand the safe region, the second is to obtain the high
reward region, and the third is to detect the change-point. We evaluate and compare its
performance with baseline policies via simulation.

4.1 System Model and Problem Statement

We consider a discrete time model for the safe optimization problem with time indexed
by t ∈ Z+. The objective of the safe optimization problem is to find the maximum of a
time varying unknown function f(x, t) where x ∈ X ⊆ R subject to safety constraints. We
assume that f(x, t) is a Lipschitz continuous function of x on a compact set X ⊆ R for
every t. The Lipschitz constant is assumed to be L. In this chapter we consider functions
which model switching of the environment characteristics, the function f(x, t) is assumed
to be f1(x) until a time tc (i.e., f(x, t) = f1(x),∀t ∈ {0, 1, . . . , tc − 1} and f(x, t) =

f2(x),∀t ∈ {tc, tc + 1, · · ·}. Here for simplification we consider the problem with only
one change1. We also assume that ∀x, |f1(x)− f2(x)| ≤ B, where B is positive.

We note that since the function is unknown, we optimize the function by observing the
value of the function at points xt ∈ X which are chosen for every time t. The observed
value at time t is denoted as yt. The safety constraint that we consider in this chapter is that
the fraction of time yt ≥ h is greater than or equal to 1− δ where δ ∈ (0, 1). Here we note

1We extended it to the case of multiple changes which is explained in section 4.5.2.
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that h ∈ R is chosen to be less than maxx f(x, t),∀t. So ideally our problem is to obtain a
sequence of points x∗t such that ∀t, f(x∗t , t) = maxx∈X f(x, t), and f(x∗t ) ≥ h. Since the
functions are unknown we note that obtaining such as sequence of points would be a tough
task. We therefore first define the following metrics and formulate a simpler problem.

A policy π is defined to be a sequence of xt chosen by the optimizing agent. The
sequence xt could be chosen as a function of the history of choices, i.e., (x0, x1, . . . , xt−1)

as well as the observations (y0, y1, . . . , yt−1). We denote by ∆π(t) the gap between the
maximum value of the function and the observed value yt at xt

∆π(t) = max
x∈X

f(x, t)− yt

We also define the normalized cumulative regret over a horizon T as

Rπ(T ) =

∑
t ∆π(t)

T

The cumulative unsafe evaluations over a horizon T is defined as

Uπ(T ) =
∑
t

I {f(xt, t) < h},

where I is the indicator function. Our objective is to find a policy π such that the regret is
minimized for all T subject to a safety constraint.

min
π
Rπ(T ) such that

Uπ(T )

T
≤ δ. (4.1)

We define the true safe set S∗t as S∗t = {x : f(x, t) ≥ h}. We assume that at t = 0, an
element of S∗0 called safe-seed is known to the algorithm2.

Ideally, we would want a policy π that achieves the above minimum for any choice of
f1 and f2. However, this may not be possible [25, Chapter 2]. In this chapter, we evaluate
the performance of a policy by considering the average of the above metrics over choices
of the function pair (f1, f2).

2For comparison purposes, we introduce genie policies. For these genie policies we note that at t = 0,
one point each from the disjoint intervals that makes up S∗0 is given as input. This is called the safe-seed set.
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4.2 Background: Safe-Opt Algorithm

In this section, we briefly review the Safe-Opt algorithm proposed by Sui et. al. [6]
and introduce some essential notation since our algorithm is an extension of Safe-Opt to
switching environments.

We note that in [6] the problem is similar to that in (4.1) but the function f(x) is time-
invariant. Thus the authors approach the problem of estimating the maximum of the un-
known function f(x) by estimating f(x) using Gaussian process (GP) regression. In GP
regression, the unknown function is assumed to be modelled by a sample function from a
GP prior [21]. The GP prior is completely characterized by its mean function µ(x) (without
loss of generality µ(x) = 0) and covariance function k(x, x′) where x, x′ ∈ X . At every
time t, the Safe-Opt policy chooses a point xt and receives an observation yt = f(xt) + nt

where nt is an independent sample from Gaussian noise with mean 0 and variance σ2.
Based on yt a posterior distribution for the unknown function can be derived. This poste-
rior distribution is again Gaussian and characterized completely by a mean function µt(x)

and covariance function kt(x, x′). In order to satisfy the safety constraints, Safe-Opt com-
putes upper and lower confidence bounds on the function using this posterior. The upper
ut(x) and lower lt(x) confidence bounds are defined as

ut(x) = µt(x) + βtσt(x),

lt(x) = µt(x)− βtσt(x).

By an appropriate choice of βt and by choosing xt+1 such that lt(xt+1) ≥ h, Safe-Opt is
able to satisfy the safety constraint with high probability. We denote by Qt(x) the interval
[lt(x), ut(x)] as a function of x ∈ X . We also denote the length of the confidence interval
as wt(x) := ut(x)− lt(x). We note that on the basis of the confidence bounds an estimate
St ⊆ X of the safe set can be maintained which is defined as

St = {x ∈ X |lt(x) ≥ h} (4.2)

We note that at t = 0 we are given a safe seed S∗0 (in the context of Safe-Opt S∗t is time-
invariant). Since the safe seed may not achieve the maxima of f(x) we need to explore
safely. Safe-Opt maintains a set Gt ⊆ St of candidate decisions that, upon potentially
repeated selection, have a chance to expand St. The set Gt is defined as

Gt = {x ∈ St|ψt(x) > 0} (4.3)
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where
ψt(x) = |{x′ ∈ X \ St|ut(x)− Ld(x, x′) ≥ h}|.

We note that SafeOpt assumes Lipschitz continuity for the function f(x) with Lipschitz
constant L over x ∈ X . We also note that in order to find the maxima, we need to consider
candidate points which are chosen from a set Mt ⊆ St of decisions that are potential
maximizers of f .

Mt = {x ∈ St|ut(x) ≥ max
x′∈St

lt(x
′)} (4.4)

Safe-Opt policy then chooses points xt according to

xt = argmax
x∈Gt∪Mt

wt(x). (4.5)

4.3 Adaptive SafeOpt

In this section, we propose a heuristic policy (Adaptive SafeOpt) that extends Safe-Opt
[6] to adapt to the switches in f(x, t). In contrast to Safe-Opt, Adaptive SafeOpt balances
three objectives: the first is to expand the safe region, the second is to obtain the high
reward region, and the third is to detect the change-point.

We note that an intuitive approach to adapting to the change in the function f(.) is
to detect whether a change has happened and then restart the Safe-Opt algorithm. The
challenges here are therefore to quickly detect the change as well as to find a safe seed
for restarting Safe-Opt. We note that the following is a candidate rule which can be used
to detect a change. At each time step t we observe a noisy observation of function f ,
yt = f(t, xt) + nt, from which we update the GP model of function, where xt is sampled
according to the above sampling criteria. To detect the change-point, at every time step we
check the condition that the observed yt is within the current confidence interval Qt or not.
If yt ∈ Qt(xt) then the algorithm decides that the function has not changed. If yt 6∈ Qt(xt)

then Adaptive-SafeOpt declares that the change-point has detected and the function has
changed. In order to balance between the need to detect a change as well as maximize the
function safely, we use an ε-greedy approach for Adaptive SafeOpt. At every time t we
choose

xt =

argminx∈St wt(x) with ε probability

argmaxx∈Gt∪Mt
wt(x) with 1− ε probability

(4.6)

Suppose a change has been detected, then we also need to estimate a new safe set St. If the
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yt at the declared change time is safe, then the new safe seed is xt itself. On the other hand
if yt < h, then we initialize a safe-set estimate defined as

St =

{x ∈ X |lt−1(x)−B ≥ h} if being pessimistic

{x ∈ X |ut−1(x) +B ≥ h} if being optimistic
(4.7)

Here we make use of the assumption that |f1(x)−f2(x)| ≤ B, ∀x. So at that time t,we can
assume f2(x) = lt−1(x) − B to estimate the safe set St which is being pessimistic way or
we can assume f2(x) = ut−1(x) + B to estimate the safe set St which is being optimistic
way. It may turn out that St = ∅ or not. If St 6= ∅ then we have a safe set and we continue
with Safe-Opt as before. However, if St = ∅ according to the above rule then we pick a
xt+1 from

xt+1 =

argmax lt(x) if being pessimistic

argmaxut(x) if being optimistic
(4.8)

where we note that xt although unsafe has been used to update the GP. At change-point
we reinitialize the GP which can be done in two ways. The one way is to use the previous
function observations knowledge to define the mean function µ(x) by posterior mean func-
tion of the previous function and covariance function k(x, x′) by the posterior covariance
function of the previous function plus a radial basis kernel. In second way we don’t uti-
lize the previous function observation information to re-initialize the GP so we take mean
function µ(x) = 0 and covariance function k(x, x′) is defined by a radial basis kernel.

The complete algorithm is given in Algorithm 4.1. We note that a few practically mo-
tivated modifications are introduced in Algorithm 4.1. First of all, consider that case in
which we have some prior information about the inter-change duration, e.g., we know that
the inter-change duration is at least some number of slots. Then, we note that the ε-greedy
policy need not be used immediately after a change-point. We incorporate this by not using
the above ε-greedy policy until a counter expires. In order to control the number of data
points which need to be stored at every instant to update the GP posterior, we also introduce
a data window. The data window size is incremented by one until a maximum window size
(window_max) is reached.

We note that an intuitive method to handle a time-variant environment is to consider
data only in the immediate past. In order to evaluate how the Adaptive-SafeOpt policy
compares with such a policy we also consider a FixedWindow-SafeOpt policy defined as
follows. The FixedWindow-SafeOpt policy has a parameter window. For FixedWindow-
SafeOpt, the GP model for f(x, t) is updated at every time t using (xt−window+1, . . . , xt)
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Algorithm 4.1: Adaptive-SafeOpt
Input: Function domain X , GP prior (µ, k), signal variance parameter σ0, seed set S0, safety threshold h, window_min,

window_max, delaychangedetection_flag = True, changepoint_flag =False, changedetection_delay,
counter = 0, changepoint_index = 1, B, ε, use_modifiedkernel=True or False.

1 Initialize GP with safe seed points S0 and compute Q0

2 X = {x|x ∈ S0}, Y = {f(x)|x ∈ S0}
3 for t = 1, .. do
4 if changepoint_flag = false then
5 St ← {x ∈ X|lt(x) ≥ h}
6 Mt ← {x ∈ St|ut(x) ≥ maxx′∈St

lt(x′)}
7 Gt ← {x ∈ St|ψt(x) > 0}
8 else

9 St ←
{
{x ∈ X|lt−1(x)−B ≥ h} if being pessimistic.
{x ∈ X|ut−1(x) +B ≥ h} if being optimistic

10 Mt ← {x ∈ St|ut−1(x) ≥ maxx′∈St
lt−1(x′)}

11 Gt ← {x ∈ St|ψt−1(x) > 0}
12 changepoint_flag = False

13 end
14 if delaychangedetection_flag = True then

15 xt ←


argmaxx∈Gt∪Mt

(wt(x)) if St 6= ∅
argmaxx∈X (lt(x)) if St = ∅ and being pessimistic
argmaxx∈X (ut(x)) if St = ∅ and being optimistic

16 yt ← f(xt) + nt
17 window = window + window_increment
18 counter = counter + 1
19 if window > window_max then
20 window = window_max
21 end
22 if counter = changedetection_delay then
23 counter = 0, delaychangedetection_flag = False.
24 end
25 else

26 xt ←


argminx∈St

wt(x) with ε probability
argmaxx∈Gt∪Mt

wt(x) with 1− ε probability
argmaxx∈X (lt(x)) if St = ∅ and being pessimistic
argmaxx∈X (ut(x)) if St = ∅ and being optimistic

27 yt ← f(xt) + nt
28 if yt < lt(xt) or yt > ut(xt) then
29 window = window_min
30 changepoint_index = t
31 delaychangedetection_flag = True
32 changepoint_flag = True

33 else
34 window = window + window_increment
35 if window > window_max then
36 window = window_max
37 end
38 end
39 end
40 start = t− window
41 if start < changepoint_index then
42 start = changepoint_index
43 end

44


update GP using (xstart, . . . , xt) and (ystart, . . . , yt). if changepoint_flag = False
reinitialize GP with (xt, yt) without modified kernel if changepoint_flag = True and use_modifiedkernel = False

reinitialize GP with (xt, yt) with modified kernel if changepoint_flag = True and use_modifiedkernel = True

45 Compute Qt(x), ∀x ∈ St
46 end
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and (yt−window+1, yt). Then the sets Qt(x), Gt, and Mt are computed and xt+1 is chosen as
in SafeOpt (see Section 4.2).

4.4 Baseline Algorithms

In this section we discuss “Genie” algorithms which have access to extra or side infor-
mation. Genie policies are not practically implementable since they assume the availability
of such information, but are used to obtain insights into the best possible performance of
policies in the case of switching functions.
Genie-CP-SS: This is a policy that has knowledge of the time tc at which change point
happens as well as the true safe seed set for f2 after switching. We note that a function
(f1 or f2) may have multiple disjoint intervals in the true safe set. We assume that a single
point from each of these disjoint intervals is given as part of the safe seed set to Genie-CP-
SS. Then, for t < tc Genie-CP-SS uses Safe-Opt which is initialized with the safe seed,
and for t ≥ tc Safe-Opt can be re-initialized with the new safe seed and used. Thus, the
policy chooses xt = argmaxx∈Gt∪Mt

(wt(x)). We note that since tc as well as the safe-seed
set is known, Genie-CP-SS should achieve the minimum possible value of regret with the
minimum number of unsafe evaluations and provides an useful baseline for comparing with
Adaptive-SafeOpt.
Genie-CP: This policy has side information only about the change point and not about the
safe seed when a change happens. At tc if ytc ≥ h, then we re-initialize Stc = xtc and then
for t > tc, the policy chooses xt according to xt = argmaxx∈Gt∪Mt

(wt(x)). Otherwise, we
choose xt as argmaxx∈D lt(x). The performance of Genie-CP would indicate the loss in
performance due to the non-knowledge of safe seed set.
Genie-SS: This policy has side information of the safe seeds. However, it does not know
the change point and uses a change point detection scheme as follows (this is similar to
used by Adaptive Safe-Opt). At every time t, if the algorithm is allowed to do change
detection (see discussion about incorporating prior information about change point times
for Adaptive-SafeOpt), and if the current observation yt 6∈ Qt(xt) Genie-SS declares that
a change has happened. Once a change is declared to have happened, the genie is given
one safe seed each from each of the disjoint intervals which makes up the true safe set S∗t .
Similar to Genie-CP, the performance of Genie-SS would indicate the loss in performance
due to non-knowledge of the change point.
GP-UCB-CP: Srinivas et al. [26] had proposed GP-UCB algorithm which does not con-
sider the safety constraint. Here we consider GP-UCB endowed with side information
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about when the change occurs so as to compare the regret with our policy. We note that
GP-UCB-CP uses xt = argmaxx∈D ut(x) and re-initializes the algorithm at the change
point tc. We note that GP-UCB-CP would inform us about the global maxima without
any regard to the safety constraint. We expect that Genie-CP-SS and GP-UCB-CP would
perform similarly as the global maxima is also safe; however we note that the exploration
methodology for both of these policies are different.

4.5 Simulations and Performance Analysis

4.5.1 Experiment setup for single change-point case

For comparing the performance of the algorithms proposed above, we consider one-
dimensional functions f1(x) and f2(x) which are sampled from a GP prior. The safety
threshold h is assumed to be 0 without loss of generality. The mean function µ(x) is
assumed to be 0 and the covariance function is specified by a radial-basis function kernel
(parametrized by variance of 2 and length scale of 1). When sampling f2 we restrict to
those samples such that ∀x, |f1(x) − f2(x)| ≤ B, where B is fixed to be 1. We also
sample f1 and f2 such that both f1(0) > 0 and f2(0) > 0 so that there is at least one point
in the safe set for both functions. In our experiments, we consider one change point at
tc = 150. The time horizon is assumed to be 300. In the experiment shown below, we
draw 500 samples of function pairs f1 and f2. For each pair of functions, the initial safe
seed is the same for Adaptive-SafeOpt and Genie-CP; also the safe-seed set is the same for
Genie-CP-SS and Genie-SS. In Figure 4.1 we illustrate ∆π(t) for the different algorithms
as a function of time. We plot the average of ∆π(t) over the 500 samples of (f1, f2) with
the standard deviation around the mean. We observe that GP-UCB-CP, Genie-CP-SS, and
Genie-SS converge to the minimum possible ∆π(t) after an initial exploration phase. We
also note that the proposed Adaptive-SafeOpt as well as Genie-CP converges but since
the safe set that they explore is limited in size, the convergence is to a local maxima. The
FixedWindow-SafeOpt algorithm is observed not to converge. We also consider a case with
observation noise variance of 0.2 in Figure 4.2. We observe that in this case Genie-CP-SS
and Genie-SS are limited by their ability to explore the safe sets completely and have larger
gaps from the optimal value, in comparison to the GP-UCB-CP algorithm which is able to
achieve ∆π(T ) = 0 on average. Again, the proposed Adaptive-SafeOpt converges to the
local maxima corresponding to the safe seed that it finds, which is shown by the match with
the Genie-CP policy.
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Figure 4.1: Comparison of ∆π(T ) as a function of T for different algorithms. The change
point tc = 150. In this illustration, we assume that there is no observation noise.
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Figure 4.2: Comparison of ∆π(T ) as a function of T for different algorithms. The change
point tc = 150. Observations are noisy with noise variance of 0.2.

The time normalized regretRπ(T ) for these policies without and with observation noise
variance are shown in Figures 4.3 and 4.4. We observe that Genie-CP-SS and Genie-SS
overlap with each other due to zero observation noise variance. Also, in this case, Genie-
SS able to detect the change point accurately at tc without any delay. We illustrate the
cumulative number of unsafe evaluations Uπ(T ) for the different policies in Figure 4.5.
Interestingly, we find that on average, Uπ(T ) increases for those policies for which the
side information about the safe set is not available. This is found to happen because the
proposed algorithms get attracted to local maxima, which are unsafe. Another set of exper-
iments where the averaging is done by excluding such examples confirm this; see Figures
4.6 and 4.7. We then observe that GP-UCB has traded off unsafe evaluations with achieving
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Figure 4.3: Comparison of Rπ(T ) as a function of T for the different algorithms. The
change point tc = 150.
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Figure 4.4: Comparison of Rπ(T ) as a function of T for the different algorithms. The
change point tc = 150. Observations are noisy with noise variance of 0.2.

the global maxima. We note that the performance of Adaptive-SafeOpt depends critically
on the safe-set initialization at the change point. Although Adaptive-SafeOpt is able to con-
verge to a local safe maxima, it could still be larger than the global safe maxima which is
achieved by Genie-CP-SS or Genie-SS. It has also been observed that instead of choosing
xt+1 as argmax lt(x) when St = ∅, the GP-UCB choice of xt+1 = argmaxut(x) leads to
lower Rπ(T ).
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Figure 4.5: Comparison of the cumulative number of unsafe evaluations Uπ(T ) as a func-
tion of T for different algorithms. The number of unsafe evaluations increase at the change
point tc.
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Figure 4.6: Comparison of Rπ(T ) as a function of T for the different algorithms after
excluding the cases in which the local maxima occurs. The change point tc = 150.

4.5.2 Experiment setup for multiple change-points case

We extended the Adaptive-SafeOpt algorithm to multiple change-points case. In multi-
ple change-point case the function f(x, t) switches by

f(x, t) =

f(x, t− 1) with 1− p probability

fnew(x) with p probability

So at each time t with p probability function changes to fnew(x) otherwise remain same.
In this experiment we assumed p = 0.01 and the functions f(x, t − 1) and fnew(x) are
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Figure 4.7: Comparison of the cumulative number of unsafe evaluations Uπ(T ) as a func-
tion of T for different algorithms. The cases where the local maxima occurs are excluded
in the average.

one-dimensional and sampled from GP prior which having zero mean function and covari-
ance function is specified by a radial-basis function kernel (parametrized by variance of 4

and length scale of 1), with boundedness condition |f(x, t − 1) − fnew(x)| ≤ B, where
B is fixed to be 2.5. The safety threshold h is assumed to be 0 without loss of generality.
The time horizon is assumed to be 200 and the observation noise variance is 0.0. In the
experiment shown below, the performance metrics are averaged over 20 run. For each run,
the initial safe seed is the same for Adaptive-SafeOpt and Genie-CP.

In Figure 4.8 We plot the average ofRπ(T ) and Uπ(T ) over the 20 run with the standard
deviation around the mean as a function of T . We observe that GP-UCB-CP with modi-
fied kernel perform better compare to GP-UCB-CP without modified kernel and gives less
unsafe evaluation and normalized regret. The same results (see Figures 4.9 and 4.10) are
observed for other policies also, means if the policy is using modified kernel to reinitialize
the GP at the change-point the unsafe evaluation and normalized regret is less compare to,
if they don’t use modified kernel to reinitialize the GP at the change-point.

In Figure 4.11 We plot the average of Rπ(T ) and Uπ(T ) over the 20 run with the stan-
dard deviation around the mean as a function of T . We observe that GP-UCB-CP converge
to the minimum possible Rπ(t) after an initial exploration phase. We also note that the
proposed Adaptive-SafeOpt as well as Genie-CP converges but since the safe set that they
explore is limited in size, the convergence is to a local maxima. We then observe that
GP-UCB-CP has traded off unsafe evaluations with achieving the global maxima. The
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Figure 4.8: Comparison of Uπ(T ) (4.8a) andRπ(T ) (4.8b) as a function of T for GP-UCB-
CP policy for with or without use of modified kernel at the time of change.
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Figure 4.9: Comparison of Uπ(T ) (4.9a) andRπ(T ) (4.9b) as a function of T for Genie-CP
policy for with or without use of modified kernel at the time of change.

proposed Adaptive-SafeOpt as well as Genie-CP have less unsafe evaluation compare to
GP-UCB-CP policy. We note that these results are same for both single change-point case
and multiple change-points case.
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Figure 4.10: Comparison of Uπ(T ) (4.9a) and Rπ(T ) (4.9b) as a function of T for
Adaptive-SafeOpt policy for with or without use of modified kernel at the time of change.
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Figure 4.11: Comparison of Uπ(T ) (4.11a) and Rπ(T ) (4.11b) as a function of T for
different policies with use of modified kernel at the time of change.
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In Figure 4.12 We plot the average of Rπ(T ) and Uπ(T ) over the 20 run with the stan-
dard deviation around the mean as a function of T . We observe that Pessimistic Adaptive-
SafeOpt and Optimistic Adaptive-SafeOpt policies achieve the same regret but the unsafe
evaluation increases for Pessimistic Adaptive-SafeOpt because for some case in stuck to
local maxima in unsafe region. In Figure 4.13 We plot the average of Rπ(T ) and Uπ(T )
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Figure 4.12: Comparison of Uπ(T ) (4.12a) and Rπ(T ) (4.12b) as a function of T for
Pessimistic and Optimistic Adaptive-SafeOpt policies with use of modified kernel at the
time of change.

over the 20 run with the standard deviation around the mean as a function of T for different
algorithm. In this we have considered x ∈ R2 along with multiple change-points case.
So we extend the Adaptive-SafeOpt for multi-dimension function also. We not that below
result is same as 1d case with multiple change-points.
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Figure 4.13: [2d-case] Comparison of Uπ(T ) (4.13a) and Rπ(T ) (4.13b) as a function of
T for different policies.
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4.6 Conclusions

In this chapter, we considered the problem of safe optimization of a time varying un-
known function using the framework of Bayesian optimization and change point detection.
We proposed a heuristic algorithm called Adaptive-SafeOpt and its variants for this pur-
pose and evaluated the performance of the algorithm via simulations. We observed that a
major challenge for extending safe optimization to time varying functions is finding a safe
point to continue exploration when there is a change in the unknown function. We find that
on average, Uπ(T ) increases for those policies for which the side information about the
safe set is not available after the change-point. This is found to happen because the pro-
posed algorithms get attracted to local maxima, which are unsafe. The variant Optimistic
Adaptive-SafeOpt algorithm doesn’t have this issue so it has less unsafe evaluation compare
to variant Pessimistic Adaptive-SafeOpt. And these two perform same if we exclude the
outlier cases. We note that the proposed Adaptive-SafeOpt converges but since the safe set
that they explore is limited in size, the convergence is to a local maxima. We also note that
Adaptive-SafeOpt with modified covariance and mean function perform better compare to
Adaptive-SafeOpt without modified covariance and mean function.

49



Chapter 5

Safe Thompson Sampling for Linear Ban-
dits

In the previous chapter 4, we have considered the objective/reward function as a non-
linear and time-variant function, and our objective is to optimize that reward function at
every time such that the safety constants are also satisfied with high probability ( The safety
constraint that we considered in the previous chapter is that the function value should be
non-negative for the chosen action x at every time ). In this chapter, we consider a simpli-
fied problem in which the reward function is linear and time time-invariant and the objective
is to maximize this reward function subject to linear safety constraints. This problem setup
is known as safe optimization in linear bandit setting. We proposed a Thompson sampling
based algorithm for this problem which has less parameter (if we exclude prior parame-
ter than there is only scheduling parameter is to tune.) to tune compare to the Adaptive
SafeOpt algorithm. There are many real world applications such as online advertising,
recommender system that can be formulate as linear bandit problem.

5.1 System Model & Problem Statement

We consider a discrete-time model where time is indexed by t ∈ Z+. The expected
reward value at time t for chosen action xt is given by

rt = x>t θ∗ + εt, (5.1)

where action xt ∈ X ⊆ Rd, parameter θ∗ ∈ Rd is fixed and not known to the agent and
noise εt ∼ N (0, σ2

r). And the agent has to satisfy the safety constraint which also linear
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and given by
x>µ∗ ≤ C, (5.2)

where parameter µ∗ ∈ Rd is fixed but not known to the agent and parameter C is a positive
constant which is known to the agent. We define a true safe set Strue which satisfy the
above constraint (5.2) by-

Strue = {x ∈ X : x>µ∗ ≤ C} (5.3)

We note that Strue is unknown since µ∗ is not known the agent. However we consider a
setting in which we estimate the set Strue at each time t by observing the noisy evaluation
of the safety constraint:

wt = x>µ∗ + ζt, (5.4)

where noise ζt ∼ N (0, σ2
w) . At each time t the xt is chosen in such a way that the proba-

bility p(xt ∈ Strue) ≥ 1− δ.

A policy π is defined to be a sequence of xt chosen by the agent. We first define
the following metrics and formulate the problem in terms of them. We define Rc

π(T ) the
cumulative regret over a horizon T as,

Rc
π(T ) =

T∑
t=1

x>∗ θ∗ − x>t θ∗

where x∗ is the optimal safe action i.e.

x∗ = argmax
x∈Strue

x>θ∗.

We also define the cumulative unsafe evaluations over a horizon T as

Uπ(T ) =
T∑
t=1

I
{
x>µ∗ > C

}
,

where I is the indicator function. The agent’s objective is to find a policy π such that the
Rc
π(T ) is minimized subject to a safety constraint.

minRc
π(T ) such that

Uπ(T )

T
≤ δ, (5.5)
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where δ ∈ [0, 1).

5.2 Bayesian Linear Regression

In the system model we have assumed the reward and safety function are linear and their
weight vectors θ∗ and µ∗ are not known. We use Bayesian linear regression [21, Chapter 2]
to estimate these weight vectors. Bayesian linear regression gives the posterior distribution
over the weight vectors which captures the uncertainty about the weight vectors.
To understand the Bayesian linear regression, let us consider the standard linear model

f(x) = x>w, y = f(x) + ε

where x ∈ Rd is the feature vector, w ∈ Rd is the unknown weight vector, f is the function
value and y is noisy observation of the function value and noise ε is sampled from iid
Gaussian distribution:

ε ∼ N (0, σ2
n).

In Bayesian setting we require a prior information on the weight parameters which express
our belief about the weight parameters before observing any data-points. We assume the
prior distribution is multivariate normal distribution with zero mean and covariance matrix
is Σp.

w ∼ N (0,Σp) (5.6)

After n observations the posterior distribution on the w is given by the bayesian inference

posterior =
likelihood× prior

marginal likelihood
p(w|X,y) =

p(y|X,w)p(w)

p(y|X)
(5.7)

where X ∈ Rn×d is the design matrix which contain the n input vectors and y ∈ Rn×1 is
the target vector.
The likelihood

p(y|X,w) =
n∏
i=1

p(yi|xi, w) =
n∏
i=1

1√
2πσn

exp(−(yi − x>i w)2

2σ2
n

)

=
1

(2πσ2
n)n/2

exp(− 1

2σ2
n

|y −X>w|2) = N (X>w, σ2
nI) (5.8)
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The posterior is proportional to the likelihood and the prior (see eqn. 5.7), by eqn (5.8 &
5.6)

p(w|X,y) ∝ exp(
−1

2σ2
n

(y −X>w)>(y −X>w)) exp(−1

2
w>Σ−1

p w)

∝ exp(−1

2
(w − w̄)>(

1

σ2
n

XX> + Σ−1
p )(w − w̄))

where w̄ = σ−2
n A−1Xy and A = σ−2

n XX> + Σ−1
p , so the posterior is also a Gaussian

distribution with mean w̄ and covariance matrix A−1.

p(w|X,y) ∼ N (w̄, A−1)

5.3 Bayesian Safe-LTS Algorithm

Bayesian Safe-LTS (BaySafeLTS) algorithm is modified version of the Safe-LTS al-
gorithm proposed by the A Moradipari et al. [27]. They used regularized least square
regression to estimate the parameters θ∗ and µ∗ instead of that we used Bayesian linear
regression which gives posterior belief over the parameter. For exploration purpose at each
time t they perturb the estimated θ̂ with a vector ηt which follow the special distribution
(see the detail in the paper [27]) instead of that at each time we sample θ from the posterior
distribution Pθ,t. To estimate the safe set at each time they define confidence interval Ct on
parameter µ, so the conservative approximation of true safe set is define by

St = {x ∈ X : x>v ≤ C, ∀v ∈ Ct}

Instead of that we define the safe set by

Algorithm 5.1: BaySafeLTS
Input: T, x0, Pθ,0, Pµ,0, C

1 for t← 0 to T do
2 rt = x>t θ∗ + εt
3 wt = x>t µ∗ + ζt
4 Pθ,t+1, Pµ,t+1 ← update the posterior for θ&µ respectively . see section 5.2
5 µ̃ ∼ Pµ,t+1

6 St = {x ∈ X : x>µ̃ ≤ C − αt}
7 θ̃ ∼ Pθ,t+1

8 x∗ = argmaxx∈St
x>θ̃

9 xt+1 = x∗
10 end

St = {x ∈ X : x>µ̃ ≤ C − αt}
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where µ̃ is sampled from posterior distribution Pµ,t and αt is a scheduling on C at time t.
We define three type of scheduling on C, The Type-1 is max-variance scheduling which is
given by

αt = β × d× ( max
k=1,..d

σtµk)

The Type-2 is max-variance square-root scheduling which is given by

αt =
β × d× (maxk=1,..d σ

t
µk

)
√
t+ 1

and the Type-3 is max-variance square-root log scheduling which is given by

αt =
β × d× (maxk=1,..d σ

t
µk

)√
log (t+1)

γ

where β and γ are positive parameter and σt
µk

is the standard deviation of the kth element
of the parameter µ at time t.

5.4 Baseline Algorithm

In this section we discuss “Genie” algorithm which has access to extra or side informa-
tion. Genie policies are not practically implementable since they assume the availability
of such information, but are used to obtain insights into the best possible performance of
policies.
Genie-True-SS: This is a policy that has knowledge of the parameter µ∗. We note that since
parameter µ∗ is known so agent know the actual true safe set Strue, Genie-True-SS should
achieve the minimum possible value of regret with no unsafe evaluations and provides an
useful baseline for comparing with BaySafeLTS.

5.5 Simulation and Performance Analysis

For comparing the performance of the algorithms proposed above, we consider the re-
ward function and safety constrain input domain are in R4, means x ∈ R4. Time horizon T
is assumed to be 10, 000. The parameters θ∗ and µ∗ are sampled from N (0, I4), C is sam-
pled uniformly from [0, 1], the measurement noise εt and ζt are sampled from N (0, 10−4).
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In the experiment shown below, we draw 50 samples of θ∗, µ∗ and C and the performance
metrics (Rc

π(T ) and Uπ(T )) are averaged over these samples.

In Figure 5.1 we illustrate Rc
π(T ) (5.1a) and Uπ(T ) (5.1b) for BaySafeLTS Type-1

scheduling algorithm as a function of T . We plot the average of Rc
π(T ) and Uπ(T ) over

the 50 samples of θ∗, µ∗&C with the standard deviation around the mean for different β
values. We observe that for Type-1 scheduling the cumulative regret Rc

π(T ) is proportional
to the T and the slope for β = 2 is less compare to the slope for β = 3. And the averaged
cumulative unsafe evaluation Uπ(T ) is same for both β values.
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Figure 5.1: Comparison of Rc
π(T ) (5.1a) and Uπ(T ) (5.1b) as a function of T for max-

variance scheduling with different β values. Observations are noisy with noise variance of
10−4.

In Figure 5.2 we illustrate Rc
π(T ) (5.2a) and Uπ(T ) (5.2b) for BaySafeLTS Type-2

scheduling algorithm as a function of T . We plot the average of Rc
π(T ) and Uπ(T ) over

the 50 samples of θ∗, µ∗&C with the standard deviation around the mean for different β
values. We observe that for Type-2 scheduling the cumulative regret Rc

π(T ) is sub-linear
and its value for proportional coefficient β = 2 is less compare to β = 3. And the averaged
cumulative unsafe evaluation Uπ(T ) is same for both β values.

In Figure 5.3 we illustrate Rc
π(T ) (5.3a) and Uπ(T ) (5.3b) for BaySafeLTS Type-3

scheduling algorithm as a function of T . We plot the average of Rc
π(T ) and Uπ(T ) over

the 50 samples of θ∗, µ∗&C with the standard deviation around the mean for different β
values. We observe that for Type-3 scheduling the cumulative regret Rc

π(T ) is proportional
to the T and the slope for β = 2 is less compare to the slope for β = 3. And the averaged
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Figure 5.2: Comparison of Rc
π(T ) (5.2a) and Uπ(T ) (5.2b) as a function of T for max-

variance square-root scheduling with different β values. Observations are noisy with noise
variance of 10−4.

cumulative unsafe evaluation Uπ(T ) is same for both β values.
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Figure 5.3: Comparison of Rc
π(T ) (5.3a) and Uπ(T ) (5.3b) as a function of T for max-

variance square-root log scheduling with different β values. Observations are noisy with
noise variance of 10−4.

In Figure 5.4 we illustrate Rc
π(T ) (5.4a) and Uπ(T ) (5.4b) for BaySafeLTS Type-3

scheduling algorithm as a function of T . We plot the average of Rc
π(T ) and Uπ(T ) over the

50 samples of θ∗, µ∗&C with the standard deviation around the mean for different γ values.
We observe that for Type-3 scheduling the cumulative regret Rc

π(T ) is proportional to the
T and the slope is less for less value of γ. And the averaged cumulative unsafe evaluation
Uπ(T ) is increases with decrease in γ but the change is not significant.
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Figure 5.4: Comparison of Rc
π(T ) (5.4a) and Uπ(T ) (5.4b) as a function of T for max-

variance square-root log scheduling with different γ values. Observations are noisy with
noise variance of 10−4.

In Figure 5.5 we illustrate Rc
π(T ) (5.5a) and Uπ(T ) (5.5b) for Genie-True-SS and

BaySafeLTS with no scheduling algorithms as a function of T . We observe that for both
algorithm the cumulative regret Rc

π(T ) coverage very quickly and Rc
π(T ) for BaySafeLTS

with no scheduling is less compare to Genie-True-SS. And the cumulative unsafe evalu-
ation Uπ(T ) is proportional to T in case of BaySafeLTS with no scheduling and zero for
Genie-True-SS.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
T

3

4

5

6

7

8

9

R
c (T

)

Genie-True-SS
BaySafeLTS

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
T

0

500

1000

1500

2000

2500

U
(T

)

Genie-True-SS
BaySafeLTS

(b)

Figure 5.5: Comparison of Rc
π(T ) (5.5a) and Uπ(T ) (5.5b) as a function of T for all

algorithm with no scheduling. Observations are noisy with noise variance of 10−4.

In Figure 5.6 we illustrate (5.6a) and Uπ(T ) (5.6b) for Genie-True-SS and BaySafeLTS
with all type of scheduling as a function of T . We observe that for BaySafeLTS Type-
1 and Type-3 scheduling the Rc

π(T ) is proportional to T but slope is less for Type-3
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scheduling, for BaySafeLTS Type-2 scheduling the Rc
π(T ) is sub-linear and for Genie-

True-SS R(π)(T ) converges very quickly. Uπ(T ) is same for all the type of scheduling in
BaySafeLTS and zero for Genie-True-SS.
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Figure 5.6: Comparison of Rc
π(T ) (5.6a) and Uπ(T ) (5.6b) as a function of T for all

algorithm with all type of scheduling. Observations are noisy with noise variance of 10−4.

5.6 Conclusions

We formulated the problem of safe optimization in linear bandit setting. And we pro-
posed a Thompson sampling based heuristic algorithm called BaySafeLTS and evaluated
its performance via simulations. For the proposed algorithm there is only scheduling pa-
rameter αt is to tune for the better performance expect the prior on unknown parameter θ∗
and µ∗. We noted the for Type-2 scheduling the cumulative regret is sub-linear and for
other type of scheduling it is linear and cumulative unsafe evaluation is very less and same
for all type of scheduling.
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Chapter 6

Conclusion

we formulated the problem of safe exploration and safe sequential optimization in switch-
ing environments. We identified a two way trade-off for exploration for safety and ex-
ploration for change points for safe exploration problem and for safe sequential optimiza-
tion there is another trade-off for exploitation for the maximization. We proposed poli-
cies Adaptive Safe-Explore for safe exploration in switching environment and Adaptive-
SafeOpt for safe sequential optimization in switching environment. We evaluated the per-
formance of proposed algorithms via simulation and also compared their performance with
baseline algorithms. We observed that a major challenge for extending safe exploration
and optimization to switching environments is finding a safe point to continue exploration
when there is a change in the unknown function. We find that on average, cumulative unsafe
evaluation Uπ(T ) increases for those policies for which the side information about the safe
set is not available after the change-point. This is found to happen because the proposed
algorithms get attracted to local maxima, which are unsafe. In case of safe optimization the
variant Optimistic Adaptive-SafeOpt algorithm doesn’t have this issue so it has less unsafe
evaluation compare to variant Pessimistic Adaptive-SafeOpt. And these two perform same
if we exclude the outlier cases. We note that the proposed Adaptive-SafeOpt converges but
since the safe set that they explore is limited in size, the convergence is to a local maxima.
We also note that Adaptive-SafeOpt with modified covariance and mean function perform
better compare to Adaptive-SafeOpt without modified covariance and mean function.

We also formulated the problem of safe optimization in linear bandit setting. And we pro-
posed a Thompson sampling based heuristic algorithm called BaySafeLTS and evaluated
its performance via simulations. For the proposed algorithm there is only scheduling pa-
rameter αt is to tune for the better performance expect the prior on unknown parameter θ∗
and µ∗. We noted the for Type-2 scheduling the cumulative regret is sub-linear and for
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other type of scheduling it is linear and cumulative unsafe evaluation is very less and same
for all type of scheduling.

6.1 Future Work

Future work involves, to extend this to the MDP setting and also to obtain worst case as well
as instance specific lower bounds to the performance of such safe optimization algorithms.
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